Math 8/9 Honours Assignment 3.1 Solving Equations with Simple Operations

1. Solve the following equations for " x ". If the answer is a fraction, simplify to lowest terms.

a) $3 x-5=13$	b) $\frac{n}{6}=\frac{6}{9}$	c) $8+5 x=12$
d) $-6 x+4=-8$	e) $\frac{8}{9}=\frac{x}{5}$	f) $13=-3 x-2$
g) $\frac{x}{8}=\frac{9}{23}$	h) $\frac{3}{x}=\frac{1}{12}$	i) $\frac{3}{4} x-0.5=\frac{2}{3} x$
j) $\frac{30}{x}=\frac{6}{14}$	k) $x+(x+1)+(x+2)=-75$	L) $3-\frac{2}{x}=5$
m) $\frac{x}{8}=\frac{x+1}{12}$	n) $\frac{8}{27}=\frac{2 x}{189}$	o) $\frac{4 x}{3}=-1$

p) $x+(x+1)+(x+2)=-75$	Q) $11 x-4(2 x-3)=24$	R) $\frac{1}{2}(4 x-8)=3 x+1$
s) $2(x+3)=3(x-5)$	t) $\frac{4}{5}+\left(\frac{-1}{4}\right) x=\frac{-3}{4}$	u) $1.4(x-5)=2.8(3 x+5)$
v) $(11 x+7)-(7 x-3)+(6 x+1)=56$	w) $\frac{1}{2}\left(\frac{1}{3}-\frac{1}{x}\right)=\frac{1}{4}$	x) $3 x-(1-x)=5$

2. Find the value(s) of " r " that satisfy the equation. Express your answer as a common fraction:
$\frac{r}{3 \frac{13}{15}}=\frac{7 \frac{1}{2}}{5}$
3. If 8% of $(n+2)$ equals 12 , what is the value of " n "?
4. If the ratio of $3 x-5 y$ to $x+2 y$ is $2: 5$, then what is the ratio of " x " to " y "?
5. If $W=\frac{S \pi d^{2}}{4}$, find the value of " W " when $S=7000$ and $d=0.8$
6. Solve for " x ": $\left(\frac{-1}{3}\right)(-4+3 x)=\frac{1}{2}$
7. Find a value for " a " such that: $\quad \sqrt{\frac{5 a}{3}-4}=11$
8. 25% The ratio of $x+7$ to $2 x+7$ is 0.64 . Find the value of $3 x+7$
9. Find the value of $A+B+C$ if " A " is $25 \% 40,10$ is 25% of " B ", and 10 is $C \%$ of 40 .
10. Two positive integers are in the ratio of 8 to 13 . If the difference between them is 35 , find the larger integer.
11. The lengths of fix of six line segments are $3 x+1,2-2 x, 5 x-1,4 x-3$, and $3 x+2$. Find the lengths of the sixth segment in terms of " x " if the mean of all six segments is $3 x-2$
12. Given that n ! means the product of all natural numbers from " n " to 1 , simplify the the following: $5!\left(\frac{1}{2!}-\frac{1}{3!}-\frac{1}{5!}\right)$
13. If $x+y=12$ and $x-y=8$, what is the value of $2 x-x y$?
14. For positive integers " x " and " y ", how many ordered pairs (x, y) satisfy $x y+x-y=53$?
15. What is the smallest integer " n " such that $n(4 . \overline{09}+3 . \overline{5})$ is a whole number?
